PCBA成品中最核心的部分便是线路板,而线路板最基础的便是线路,PCBA抄板加工及PCBA开发加工中对于线路板设计布线的了解也是必不可少的。
一、控制走线方向
输入和输出端的导线应尽量避免相邻平行。在 PCB 布线时,相邻层的走线方向成正交结构,避免将不同的信号线在相邻层走成同一方向,以减少不必要的层间窜扰。信号串扰对PCBA加工成品的功能影响较大。当 PCB 布线受到结构限制(如某些背板)难以避免出现平行布线时,特别是在信号速率较高时,应考虑用地平面隔离各布线层,用地线隔离各信号线。相邻层的走线方向示意图如下图。
二、检查走线的开环和闭环
在PCB设计布线时,为了避免布线产生的“天线效应”,减少不必要的干扰辐射和接收,一般不允许出现一端浮空的布线形式,否则可能给PCBA加工带来不可预知的结果。
要防止信号线在不同层间形成自环。在多层板设计中容易发生此类问题,而自环将引起辐射干扰。
三、控制走线的长度
1. 使走线长度尽可能的短
在 PCB 布线时,应该使走线长度尽可能的短,以减少由走线长度带来的干扰问题。
2. 调整走线长度
PCBA加工对时序有严格的要求,为了满足信号时序的要求,对PCB上的信号走线长度进行调整已经成为PCB设计工作的一部分。
走线长度的调整包括以下两个方面的要求。
a. 要求走线长度保持一致,保证信号同步到达若干个接收器。有时在PCB上的一组信号线之间存在着相关性,如总线,就需要对其长度进行校正,因为需要信号在接收端同步。调整方法就是找出其中最长的那根走线,然后将其他走线调整到等长。
b. 控制两个器件之间的走线延迟为某一个特定值,如控制器件A、B之间的导线延迟为1ns,而这样的要求往往由电路设计者提出,但由PCB工程师去实现。需要注意的是,在PCB上的信号传播速度是与PCB的材料、走线的结构、走线的宽度、过孔等因素相关的。通过信号传播速度,可以计算出所要求的走线延迟对应的走线长度。
走线长度的调整常采用的是蛇形线的方式。
四、控制走线分支的长度
在PCB设计布线时,尽量控制走线分支的长度,使分支的长度尽量短,另外一般要求走线延时tdelay≤trise/20,其中trise是数字信号的上升时间。走线分支长度控制示意图
五、拐角设计
在PCB设计布线时,走线拐弯是不可避免的,当走线出现直角拐角时,在拐角处会产生额外的寄生电容和寄生电感。走线拐弯的拐角应避免设计成锐角和直角形式,以免产生不必要的辐射,影响PCBA加工成品性能。同时锐角和直角形式的工艺性能也不好。要求所有线与线的夹角应大于等于135°。在走线确实需要直角拐角的情况下,可以采取两种改进方法:一种是将90°拐角变成两个45°拐角;另一种是采用圆角。圆角方式是最好的,45°拐角可以用到10GHz频率上。对于45°拐角走线,拐角长度最好满足L≥3W。
六、差分对走线
为了避免不理想返回路径的影响,可以采用差分对走线。为了获得较好的信号完整性,可以选用差分对走线来实现高速信号传输。前面介绍的LVDS电平的传输采用的就是差分传输线的方式。
1. 差分信号传输优点:
a. 输出驱动总的di/dt会大幅降低,从而减小了轨道塌陷和潜在的电磁干扰。
b. 与单端放大器相比,接收器中的差分放大器有更高的增益。
c. 差分信号在一对紧耦合差分对中传输时,在返回路径中对付串扰和突变的鲁棒性更好。
d. 因为每个信号都有自己的返回路径,所以差分信号通过接插件或封装时,不易受到开关噪声的干扰。
2. 差分信号的缺点:
a. 如果不对差分信号进行恰当的平衡或滤波,或者存在任何共模信号,就可能会产生EMI问题。
b. 与单端信号相比,传输差分信号需要双倍的信号线。
PCB上的差分对走线如下图
3. 设计差分对走线时,要遵循以下原则:
a. 保持差分对的两信号走线之间的距离S在整个走线上为常数。
b. 确保D>2S,以最小化两个差分对信号之间的串扰。
c. 使差分对的两信号走线之间的距离S满足S=3H,以便使元件的反射阻抗最小化。
d. 将两差分信号线的长度保持相等,以消除信号的相位差。
e. 避免在差分对上使用多个过孔,因为过孔会产生阻抗不匹配和电感。
七、控制PCB导线的阻抗和走线终端匹配
在高速数字电路PCBA加工和射频电路PCBA加工中,对PCB导线的阻抗是有要求的,需要控制PCB导线的阻抗。在PCB设计布线时,同一网络的线宽应保持一致。由于线宽的变化会造成线路特性阻抗的不均匀,对高速数字电路传输的信号会产生反射,故在设计中应该尽量避免出现这种情况。在某些条件下,如接插件引出线、BGA封装的引出线等类似的结构时,如果无法避免线宽的变化,应该尽量控制和减少中间不一致部分的有效长度。
在高速数字电路中,当PCB设计布线的延迟时间大于信号上升时间(或下降时间)的1/4时,该布线即可以看成传输线。为了保证信号的输入和输出阻抗与传输线的阻抗正确匹配,可以采用多种形式的终端匹配方法,所选择的匹配方法与网络的连接方式和布线的拓扑结构有关。
八、设计接地保护走线
在模拟电路的PCB设计中,保护走线被广泛地使用,例如,在一个没有完整的地平面的两层板中,如果在一个敏感的音频输入电路的走线两边并行走一对接地的走线,串扰可以减少一个数量级。
在数字电路中,可以采用一个完整的接地平面取代接地保护走线,接地保护走线在很多地方比完整的接地平面更有优势。
根据经验,在两条微带线之间插入两端接地的第三条线,两条微带之间的耦合则会减半。如果第三条线通过很多通孔连接到接地平面,则它们的耦合将进一步减小。如果有不止一个地平面层,则要在每条保护走线的两端接地,而不要在中间接地。
注意:在数字电路中,如果两条走线之间的距离(间距)足够并允许引入一条保护走线,那么两条走线相互之间的耦合通常已经很低了,也就没有必要设置一条接地保护走线了。
九、防止走线谐振
在PCB设计布线时,布线长度不得与其波长成整数倍关系,以免产生谐振现象。
十、布线的一些工艺要求
1.布线范围
布线范围尺寸要求如表,包括内外层线路及铜箔到板边、非金属化孔壁的尺寸。
板外形要素 |
内层线路及铜箔 |
外层线路及铜箔 |
距边最小尺寸 |
一般边 |
≥0.5(20)
|
≥0.5(20)
|
导槽边 |
≥1(40)
|
导轨深+2 |
拼板分离边 |
V槽中心 |
≥1(40) |
≥1(40) |
邮票孔边 |
≥0.5(20) |
≥0.5(20) |
距非金属化孔壁
最小尺寸
|
一般孔 |
0.5(20)(隔离圈) |
0.3(12)封孔圈 |
单板起拔扳手轴孔 |
2(80) |
扳手活动区不能布线 |
2. 布线的线宽和线距
在PCBA组装加工密度许可的情况下,应尽量选用较低密度布线设计,以提高无缺陷和可靠性的制造能力。目前一般厂家加工能力为:最小线宽为0.127mm(5mil),最小线距为0.127mm(5mil)。常用的布线密度设计参考如表。
名称 |
12/10 |
8/8 |
6/6 |
5/5 |
线宽 |
0.3(12) |
0.2(8) |
0.15(6) |
0.127(5) |
线距 |
0.25(10) |
线焊盘距 |
焊盘间距 |
3. 导线与片式元器件焊盘的连接
连接导线与片式元器件时,原则上可以在任意点连接。但对采用再流焊进行焊接的片式元器件,最好按以下原则设计。
a. 对于采用两个焊盘安装的元器件,如电阻、电容,与其焊盘连接的印制导线最好从焊盘中心位置对称引出,且与焊盘连接的印制导线必须具有一样宽度。对线宽小于0.3mm(12mil)的引出线可以不考虑此条规定。
b. 与较宽印制线连接的焊盘,中间最好通过一段窄的印制导线过渡,这一段窄的印制导线通常被称为“隔热路径”,否则,对于2125(英制即0805)及其以下片式类SMD,焊接时极易出现“立片”缺陷。具体要求如图。
4. 导线与SOIC,PLCC,QFP,SOT等器件的焊盘连接
连接线路与SOIC,PLCC,QFP,SOT等器件的焊盘时,一般建议将导线从焊盘两端引出,如图。
5. 线宽与电流的关系
当信号平均电流比较大时,需要考虑线宽与电流的关系,具体参数可以参考下表。在PCB设计加工中常用oz(盎司)作为铜箔的厚度单位。1oz铜厚定义为一平方英寸面积内铜箔的重量为一盎,对应的物理厚度为35μm。当铜箔作为导线并通过较大电流时,铜箔宽度与载流量的关系应参考表中的数据降额50%去使用。
深圳宏力捷推荐服务:PCB设计打样 | PCB抄板打样 | PCB打样&批量生产 | PCBA代工代料